
Playing Games with Optimal Competitive Scheduling

Jeremy Frank and James Crawford and Lina Khatib ∗ and Ronen Brafman †

Computational Sciences Division
NASA Ames Research Center, MS 269-3

frank@email.arc.nasa.gov
Moffett Field, CA 94035

Introduction
This paper is concerned with the problem of allocating a unit
capacity resource to multiple users within a pre-defined time
period. The resource is indivisible, so that at most one user
can use it at each time instance. However, different users
may use it at different times. The users haveindependent,
selfishpreferences forwhenand forhow longthey are allo-
cated this resource. Thus, they value different resource ac-
cess durations differently, and they value different time slots
differently. We seek an optimal allocation schedule for this
resource.

This problem arises in many institutional settings where,
e.g., different departments, agencies, or personal, compete
for a single resource. We are particulary motivated by the
problem of scheduling NASA’s Deep Space Satelite Net-
work (DSN) among different users within NASA. Access
to DSN is needed for transmitting data from various space
missions to Earth. Each mission has different needs for DSN
time, depending on satelite and planetary orbits. Typically,
the DSN is over-subscribed, in that not all missions will be
allocated as much time as they want. This leads to various
inefficiencies – missions spend much time and resource lob-
bying for their time, often exagerating their needs. NASA,
on the other hand, would like to make optimal use of this
resource, ensuring that the good for NASA is maximized.
This raises the thorny problem of how to measure the utility
to NASA of each allocation.

In the typical case, it is difficult for the central agency,
NASA in our case, to assess the value of each interval to
each user – this is really only known to the users who really
understand their needs. Thus, our problem is more precisely
formulated as follows: find an allocation schedule for the
resource that maximizes the sum of users preferences, when
the preference values are private information of the users.
We bypass this problem by making the assumptions that one
can assign money to customers. This assumption is reason-
able; a committee is usually in charge of deciding the prior-
ity of each mission competing for access to the DSN within
a time period while scheduling. Instead, we can assume that
the committee assigns a budget to each mission. We then

∗Kestrel
†QSS

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

assume that customers express preferences by attaching a
monetary value to each allocation of an interval, and that the
utility to NASA is linear in the sum of user values.

Given the users’ valuations over different time alloca-
tions, the problem is a possibly challenging optimization
problem. However, as we noted, these valuations are pri-
vate information known only to the users, anda-priori we
have no reason to assume that they will describe it truth-
fully – in practice missions tend to exagerate these values in
order to obtain more DSN time. This problem is reminis-
cent of similar competitive allocation problems. Many such
problems are solved using auction-based mechanisms. The
nature of the mechanism and its properties differ depend-
ing on the type of good being auctioned and the optimality
criteria used. In particular, the structural properties of the
goods being auctioned plays an important role in determin-
ing the complexity of solving it. Such properties include:
the number of goods of each type, whether goods are divis-
ible or not, etc. Although time is a continuous property, it
is not a classical divisible good because different allocations
with identical durations can be valued differently. Moreover,
because of their time constraints certain tasks may simply
be mutually exclusive. It is also not a standard indivisible
good because we do have some flexibility with the length
and starting time of tasks.

To the best of our knowledge, preference elicitation for
scheduling with this wide range of features has not been ad-
dressed in the literature.

The main contributions of this paper are as follows:

• We formally define the Optimal Competitive Schedul-
ing (OCS) problem for Deep Space Network (DSN).
The problem combines preference elicitation, bidding and
clearing of an auction for a constrained resource. The
problem differs from typical optimal competitive resource
allocation problems due to the mix of continuous good al-
locations with discrete (combinatorial) allocations.

• We describe a novel incentive compatible VCG mecha-
nism for this problem, i.e. the mechanism ensures that it
is a (weakly) dominant strategy for the agent’s to reveal
their true preferences.

• We show that the general version of OCS isNP-
complete, and we identify an interesting restricted sub-
class for which a polynomial time mechanism exists. This

subclass generalizes the class of Simple Temporal Prob-
lems with Preferences (STPPs).

• We provide a preliminary empirical study of our algo-
rithm on randomly generated tractable cases of OCS prob-
lems.

The paper is organized as follows. In Section 2 we review
the relevant related results. In Section 3 we formally de-
fine the OCS problem. In Section 4 we discssu a VCG-like
mechanism for OCS. In Section 5 we describe a tractable
class of OCS. Preliminary empirical results are presented in
Section 6. We conclude in Section 7.

Definitions
We recall a number of needed definitions and previous re-
lated work. We begin with some standard definitions from
the literature on auctions. We assume the auction is for a
unit resource over a fixed time horizon. There is one seller
andN buyers. We restrict our attention to one-shot sealed
bid auctions with no reserve price.

The first definition describes a basic auction mechanism:

Definition 1 A direct revelation mechanismreceives as in-
put a vector of valuations and produces as output an allo-
cation and a vector of payments where each bidder receives
their allocation and pays their payment.

In general, agents’ valuations need not necessarily reflect
their true preferences. An incentive compatible mechanism
is one where agents have no advantage misrepresenting their
preferences.

Definition 2 A direct revelation mechanism isincentive
compatibleif for every bidderA, every true valuationvA,
all declarations of other biddersv−A and all possible false
declarationsvf

A, the utility of biding biddingvf
A by agentA

under the mechanism does not exceed agentA’s utility bid-
ding the true valuationvA. That is, letvA beA’s valuation,
λA beA’s allocation andPA beA’s payment whenA bids
truthfully, is allocatedλA, and the other agents bidv−A.
Letλf

A andP f
A beA’s allocation and payment whenA bids

vf
A, is allocatedλf

A, and the other agents bidv−A. Then, we
must have thatvA(λA)− PA ≥ vA(λf

A)− P f
A.

The best known technique for generating a direct revelation
mechanism is via the Vickery-Clarke-Groves mechanism. It
can be viewed as a generalization of second price auctions.

Definition 3 Let v be a valuation vector forN agents. The
Vickery-Clarke-Groves (VCG) mechanism computes the al-
location with maximal sum of valuations. LetλA be agent
A’s allocation. AgentA’s price is set to the maximal sum
of valuations assuming agentA’s valuation was altered to
reflect a value of 0 forλA.

VCG mechanisms are designed to minimize the impact
of the ”winners’ curse”. While bidding, ifA theorized win-
ning an auction and paying the bidding price, thenA would
lower its bid on the assumption that it bid too much. The
VCG mechanism forcesA to reason about the prices all the
other bidders might make;A is now forced to bid his true
valuation function.

Next, we recall the definition of a tractable class of opti-
mal scheduling problems: Simple Temporal Problems with
Preferences (STPPs) ().

Definition 4 An STPP consists of a set of eventsE, a set of
simple temporal constraints of the forma ≤ |ei − ej | ≤ b
whereei, ej ∈ E, and a set of real-valued preference func-
tions on some event distances:f(|ei, ej |). One event,e0, is
designated as the origin (i.e.,e0 = 0), and constraints in-
volvingei ande0 are interpreted as unary bounds on when
ei can occur. The problem is to find a feasible assignment to
ei(6= e0) i.e., an assignment satisfying the constraints maxi-
mizing

∑
ei,ej

f(|ei − ej |) that also satisfies all constraints.

Previous Work
Our problem has two central aspects: inducing the agents
to reveal their true preferences and solving the associated
optimal scheduling problem. Previous work roughly falls
into these two categories.

Infinitely divisible goods auctions are usually found in
treasury market settings. (BZ93) consider the optimization
of auctioneer’s revenue in a shared-value auction of an (al-
most) infinitely divisible good, namely treasury bills. This
paper is principally concerned with comparing VCG mech-
anisms (called uniform price auctions) to first-price auctions
(called discriminatory) price auctions. While intriguing, the
work does not seem to shed light on how to construct mech-
anisms for our OCS problem.

Some authors have described incentive compatible mech-
anisms for multi-unit combinatorial auctions. (BGN02) de-
scribe a tractable, incentive compatible mechanism for a
multi-unit combinatorial auction that does not maximize the
seller’s profits. The auction assumes monotonicity in bid-
ders’ demands, that is, the more of a good they receive the
more they are willing to pay. This approach may not scale
to our full problem, and also does not reflect the hybrid
nature (mixes of discrete and continuous decisions) in our
setting. (Ms03) describe decentralized maximize weighted
social welfare auctions. Although interesting, distributed
mechanisms are not an issue in our case. They also explore
problems like lying auctioneer that we do not worry about.

Finally, some authors have considered simple scheduling
auction settings. (Rou04) considers game-theoretic schedul-
ing, but uses only simple scheduling models in which the
value of tasks is derived from the load on the machines on
which they are scheduled. This can again be considered a
shared-value setting, as the value to the bidder is a func-
tion of not only their award, but the award of other bidders.
Furthermore, there is no task selection and no task order-
ing component to the problem considered here. (Ms03) also
discuss scheduling problems of this nature, again using a
decentralized auction setting to solve the problem. (SS00)
show that very restrictive forms of our problem have poly-
nomial time algorithms; these require tasks with fixed dura-
tion, and hence fixed preference value, and no flexibility in
start times. While relevant and possibly generalizable, the
setting is far simpler than our general model.

The literature on scheduling contains vast numbers of
tractable cases for scheduling problems with one optimiza-

tion criteria. The work most related to our type of optimiza-
tion problem is that on STPPs. In (MMK+04) it was shown
that if the preference functions over|ei−ej | are restricted to
be piecewise linear and convex, the STPP can be solved by
formulating an appropriate linear program (LP), rendering
its solution time polynomial. It is important to note that in
an STPP, all events must be assigned a positive time. If we
view events as task start and end times, this means that in or-
der to formulate a scheduling problem as an STPP, we must
first resolve all resource conflicts either by rejecting certain
tasks or by ordering tasks. Thus, in practice the input con-
sists of a set of ordered tasks, all of which must be allocated
some time. Cases where there are too many tasks or sets of
tasks have trivially infeasible constraints cannot be resolved
by the existing techniques.

The Optimal Competitive Scheduling Problem
for the Deep Space Network

We begin with a resourceR, a time horizon[0..h], and a set
of biddersJ . Let A be a set of activities. LetSA be the
start time,DA be the duration, andEA be the end time of
activity A ∈ A. Associated withA are the following con-
straints:SA +DA = EA, All activitiesA also share a single
unary resourceR (i.e. jobs can’t overlap). We may also
associate other constraints among collections of activities.
The most elementary such constraints are absolute start and
end time:0 ≤ sAlb

≤ SA ≤ sAub
≤ h, and0 ≤ eAlb

≤
EA ≤ eAub

≤ h. Similarly, tasks can have minimum and
maximum durations:0 ≤ dAlb

≤ DA ≤ dAub
≤ h. An-

other simple form of constraint are Simple Temporal Con-
straints (DMP91) of the forma ≤ TA − TB ≤ b, where
TA = {SA, EA}, which can enforce activity orderings and
activity endpoint separations.

Bidders express preferences overwhenindividual activi-
ties take place,how muchactivities are separated, andhow
long activities last. For example, a common preference is
that longer duration activities are better. Another common
preference is for activities to start at some timet. In the
DSN setting, the first of these preferences is the most com-
mon. For simplicity, we assume that each bidder bids on
one task; in what follows, tasks and bidders will be referred
to identically1. Thus, players’ preferences are functions of
the formvA(SA, DA). This model assumes that the activi-
ties and constraints between activities are known to bidders
ahead of time. In order to make it possible for players to
bid, we imagine the following protocol: 1) tasks published
2) money distributed 3) players submit bids 4) mechanism
solves for schedule 5) prices paid.

The auction protocol is a single sealed-bid auction; play-
ers bid, winners and prices are determined, and winners de-
termine the schedule that will be executed. Thus, the win-
ning bids must collectively define feasible schedules. How-
ever, if there is a constraint mentioningA but A is rejected
from the final schedule, the constraint is meaningless and
need not hold in the final schedule.

1Much of our development generalizes to scenarios with multi-
ple bids per task.

The Optimal Competitive Scheduling Problem (OCS) is
to maximize the sum of the value of players’ true preferences
over schedules given the constraints and bids by choosing
a subset of bidsA′ to satisfy and choosing the values of
SA, EA, DA∀A ∈ A′ satisfying the relevant constraints (in-
cluding the resource constraints).

Problem Complexity
Computing an optimal allocation for the agents’ declared
preference functions is a necessary step for a VCG-like
mechanism. In general, any mechanism will produce, as
a by-product, a solution to the optimal allocation prob-
lem with respect to the agents’ true preference functions.
OCS is an extension of1|ri; pi; di|

∑
i wiUi (Brü98); that

is, scheduling tasks with release times, due dates, and dura-
tion constraints on a unary resource in order to minimize
the weighted penalty of missed jobs (alternatively maxi-
mize value of completed jobs) with duration-dependent val-
ues for tasks, additional opportunities for positive value
(start time preferences), and additional constraints (simple
temporal constraints on timepoints). Karp has shown that
1|ri; pi; di|

∑
i wiUi is NP-complete; thus, OCS must be

NP-hard.

A Second Price (VCG) Mechanism for OCS
Building a VCG mechanism for OCS is a little tricky. Sup-
posevA is only a function of the duration of taskA, i.e.
vA(DA). Let DA = λA be A’s allocation andPA be
A’s payment. SupposeλA are the allocations maximizing
P =

∑
A∈A vA(λA). Suppose we only eliminate the win-

ning allocationλA by enforcingvA(λA) = 0. Then to find
the second price we can build 2 optimization problems: the
first problem is identical to the original optimization prob-
lem with the added constraintDA < λA and the second is
identical to the first with the added constraintDA > λA;
let the maxima for these two problems beP<, P> respec-
tively. The second price ismax((P>−(P−v(λA)), (P<−
(P − v(λA))). But since we impose< constraints it’s clear
that the second price is virtually identical to the first price,
implying PA = v(DA)+

−ε! In general, ifvA depends on
k variables,2k optimization problems are needed to justify
the second price, but the ”proof” suffices to show that 2d
price always equal to first price. Such a mechanism is es-
sentially not a VCG mechanism, because the bidders can
proveto themselves that the second price always equals the
first price. This means that, once again, bidders will be able
to reason about the price they will pay as a function of their
own bid, and have incentive to under-bid.

Mechanism and Proof of Complexity
To help with creating our mechanism we repeat Theorem 1
of (BGN02):

Theorem 1 A direct revelation mechanism is incentive com-
patible if and only if, for every bidderA and every vector of
bidsv−A: 1) for every allocationλ, PA(λ) is not a function
of vA, and 2) for eachvA, λA maximizesvA(λA)−PA(λA)
for all legal allocationsλA.

Our problem in creating the VCG mechanism above was
that we only eliminate a set of measure zero from an effec-
tively infinite space of bids. The result is that there is prov-
ably no detectable shift in the price; alternately, there is too
much information aboutvA entering the price calculation.
One way to repair this is to forcevA’s bid for anyvalue of
DA to zero. More generally, rather than eliminateA’s bid
for a particular assignment, we can simply eliminateA’s bid
entirely. If P−A is the value of the optimal solution without
A′s bid, then the second price isP−A − (P − v(λA)).

Theorem 2 The above mechanism is incentive compatible.

We will show our allocation satisfied the conditions of The-
orem 1 of (BGN02). The valueP − v(λA) is the value of
the allocationλ−A to all other bidders. The value of this al-
location will be the same in the allocation definingP−A. If
it weren’t thenP would not maximize

∑
A∈A vA(λA). This

can be shown by recasting the auction as a multi-good com-
binatorial auction, and analyzing the mechanism as applied
to the new auction, but space precludes the full exposition.
The value of the allocation toA redistributed toB 6= A de-
pends only onv−A; thus,P−A−P +v(λA) only depends on
v−A, satisfying Condition 1. Now supposevA is fixed. The
mechanism awardsλA to A if its bid maximallyexceeds that
of other bids for the same allocation. That means any other
allocationλ′A with vA(λ′A) > vA(λA) has the property that
PA(λ′A) > vA(λ′A). This satisfies Condition 2.

The Tractable Case: Extending STPPs
We showed earlier that the OCS problem isNP-hard. Thus,
in general, we would expect to use branch-and-bound search
to find an optimal allocation. In this paper, we identify and
solve a tractable case of OCS. In the future, we would expect
to use such tractable cases to produce bounds for the general
case.

We restrict the temporal constraints to be activity ordering
constraints (i.e., constraints on the relation between the start
times of different tasks). For simplicity, we will continue to
refer to these constraints using the same notation previously
used for simple temporal constraints:(a ≤ |TA − TB | ≤ b).
We will also impose limits on the formvA(DA) can take.
We first assume every functionvA(DA) is a set ofkA piece-
wise linear functions,{fk

DA
}, wherefk

DA
is defined over an

interval [xk−1, xk] andfk
DA

(xk) = fk+1
DA

(xk). Furthermore
we assume eachvA(DA) is convex.

Given the above restricted version of OCS, suppose that
we have predetermined the relative order of all conflicting
tasks. Then, we can use the LP formulation of the STPP
to solve for the task durations. The LP contains a vari-
able representing the start, duration and end of each task
(SA, DA, EA). We also introduce a new variableVA. The
form of the LP is as follows: To build the LP formulation of
the STPP, we have:

maximize
∑

vA

subject to: forallA
sA + DA = EA

sl
A ≤ SA ≤ su

A,
el
A ≤ EA ≤ eu

A,

dl
A ≤ DA ≤ du

A,
a ≤ |TA − TB | ≤ b

∀kA VA ≤ fkA

DA
(DA)

We refer the reader to (MMK+04) for the proof that the
solutions to this LP are the optimal solutions to the STPP.

Extending the STPP
The requirement that all conflicting tasks be ordered is not
particularly natural in our case. Moreover, even then, if there
are too many tasks, the system of linear constraints in the LP
may be trivially infeasible. However, if it just so happens
that all activities that could overlap on the resource are or-
dered, and all tasks allow for the possibility of zero duration
then the STPP is trivially feasible, and ”maximal” (no subset
of the STPP has a better optimal solution).

The requirement that we be able to reduce the duration of
a task to zero allows the LP algorithm to reject tasks without
conducting combinatorial search. However, we must still or-
der the tasks. We now identify a restricted set of problems
for which the best possible ordering can be found in polyno-
mial time. From the above discussion it follows that for such
problems the optimization problem is polynomial (assuming
zero-duration is allowed).

Definition 5 Two tasksA,B are a containment pairif
sAlb

≤ sBlb
andeBlb

≤ eAlb
.

Theorem 3 Given an OCS problem whose preferences are
piecewise linear convex functions overDA, and whose met-
ric temporal constraints are trivially feasible and limited to
time windows and task ordering. If no pair of tasksA,B is
a containment pair, then the ordering according tosAlb

in-
duces an STPP whose optimal solution is maximal over the
STPPs induced by any other task ordering.

In order to prove this we prove that in any feasible order-
ing whereA,B are not ordered according to this rule we can
re-orderA,B and eliminate fewer choices of task duration
due to consistency enforcement. Since the optimization cri-
teria of the LP is based on task duration, this will prove the
result. Figure 1 shows the last three cases pictorally. As-
sume w.l.o.g.sAlb

≤ sBlb
andeAlb

≤ eBlb
, thus the proper

ordering should beA ≤ B. There are 4 cases;

• SupposeA,B are mis-ordered and there are no tasksC
such thatB ≤ C ≤ A. The orderingB ≤ A prunes
the windows ofA andB to [sBlb

, eAub
], thus (possibly)

reducing the feasible durations. Re-ordering toA ≤ B
leads to no pruning of start times or durations.

• Now suppose there is at least one taskC such thatB ≤
C ≤ A with sClb

≤ sAlb
and eClb

≤ eAlb
. The con-

straintB ≤ C forces all tasks’ windows to be[sBlb
, eCub

];
reordering toA ≤ C ≤ B loosens the windows to
[sAlb

, eCub
].

• Now suppose there is at least one taskC such thatB ≤
C ≤ A with sAlb

≤ sClb
andeAlb

≤ eClb
, andsClb

≤
sBlb

andeClb
≤ eBlb

. In this case the constraintB ≤ A
is the tightest constraint, forcing the windows of all tasks
to be[sBlb

, eAub
]; reorderingA ≤ B imposes no pruning

of start times or durations.

B

A

CCase 2

B<C<A
A<C<B

C
Case 3

B<C<A
A<C<B

C
Case 4

B<C<A
A<C<B

Figure 1: The last 3 cases of the optimal ordering proof.

• Now suppose there is at least one taskC such thatB ≤
C ≤ A with sBlb

≤ sClb
andeBlb

≤ eClb
. In this case

the constraintC ≤ A forces all windows for tasks to be
[sClb

, eAub
]; reordering toA ≤ C ≤ B loosens the win-

dows to[sClb
, eBub

].

Now suppose we have a containment pair withA con-
taining B. If we assume tasks areinterruptible we can
split A into A′ and A′′ such that the optimal ordering is
A′ < B < A′′ according to the previous rule. Initially,
this may not appear to be an equivallent problem since our
preference for the duration ofA′′ depends on the duration of
A′. However, we can use the sum of their durations directly
in the objective function for the induced LP.

It is tempting to think that we can find the optimal or-
dering for a containment pair without interruptibility. Either
ordering prunes duration choices forA but neither prune du-
ration choices forB. It is trivial to determine which prunes
more duration choices forA (we can construct cases for
which either ordering prunes more choices). One might
think that the optimal ordering is that which prunes fewer
duration choices forA. Unfortunately, not only is this not
true, but we can demonstrate that containment pairs actually
break the ”optimal” ordering for non-containment pairs of
tasks. The following simple example (also shown in Figure
2) shows this:
Task A:sAlb

= 0, eAub
= 5, dAub

= 2, vA(DA) = 2dA

Task B:sBlb
= 1, eBub

= 6, dBub
= 2, vB(DB) = dB

Task C:sClb
= 0, eCub

= 1, dCub
= 1, vC(DC) = 10dC

Task D:sDlb
= 2, eDub

= 3, dDub
= 1, vD(DD) = 10dD

Task E:sElb
= 5, eEub

= 6, dEub
= 1, vE(DE) = 10dE

The idea is that highest paying tasks (C,D,andE) should
be placed in the schedule and given their maximum duration.
This leaves 2 gaps to be filled by lower paying tasks (A and
B). The gaps are as follows: [1 2] and [3 5]. IfA < B, A
gets assigned [1 2] and B gets assigned [3 5]. The value is
2+2=4. If B < A, B gets assigned 1 slot [1 2] and A gets
assigned 2 slots [3 5]. The value is 1+4=5 Thus,B < A is
the optimal ordering forA andB, contradicting the optimal
ordering when no containment pairs are present.

B

A

C D E

1 2 30 4 5 6

dA

dDdC

dB

dE

2

10 10 10

1

Figure 2: The case where containment pairs induce reversals
of the optimal ordering for non-containment pair tasks.

generateProblem(h,w,d,v,p,n)

for n tasks
Choose window sizewn u.a.r. from [1..w]
Choose start time u.a.r. from[1..h− wn]
while task windowcontainsanother task window

Shrinkwindow; updatewn

while task windowcontained byanother task window
Enlargewindow; updatewn

Choose durationdn u.a.r. from[1..min(d, wn)]
Choose maximum bidbn u.a.r. from[1..v]
Choose number of pieces of preference u.a.r. from[1..p]
for each piece of preference

#d∗ is remaining durationwn, b∗ is remaining bid heightbn

Choose piece durationdi u.a.r. from[1..d∗]; update d*
Choose bid heightbi u.a.r. from[1..b∗]; update b*
Add preference function piece of durationdi up to bidbi

Empirical Results

In this section we describe some preliminary empirical re-
sults on a VCG mechanism applied to randomly generated
instances of these problems.

Random Problems

The instances are generated as follows. Leth be the schedul-
ing horizon. Letw be the maximum window for any task,
d be the maximum duration of any task,v be the maximum
bid for any task, andp be the maximum number of pieces
of the preference function, also inputs. First, the task start
time and maximum duration are selected uniformly from the
given range. These characteristics are then modified to en-
sure that no pair of tasks is a containment pair. Finally, the
maximum bid of the task is generated, a random number of
pieces of the preference function is selected, and the prefer-
ence function is generated.

CPU Time

0

50

100

150

200

250

300

1 2 3 4 5 6

Max Pieces in Preference

M
e
a
n

 C
P

U
 T

im
e

Tasks = 200 Tasks = 400 Tasks = 600 Tasks = 800

Tasks = 1000 Tasks = 1200 Tasks = 1400 Tasks = 1600

Figure 3: CPU times for randomly generated problems with
h = 4000, w = 20, d = 15 andv = 40.

Preliminary Empirical Results
We present the results of preliminary empirical tests de-
signed to show the growth in time to solve the LP as a func-
tion of the problem2. Due to the relative simplicity of the
temporal constraints on tasks, the principal contributors to
the LP are the number of tasks and the number of pieces in
tasks’ preference functions. Figure 3 shows timing results
for problems withh = 4000, w = 20, d = 15 andv = 40.
We vary the number of tasksn from 200 to 1600 by 200,
and the maximum number of pieces of the bidp from 1 to
6. Growth in problem complexity is sub-linear inp, as ex-
pected, and appears polynomial in the number of tasks. The
CPU times shown are in seconds; we average over 5 ran-
domly generated problems. Timing is only for solving the
LP, which was done by lpsolve, a public domain LP solver.

Conclusions and Future Work
We describe the OCS problem for Deep Space Network.
This problem consists of activities with time windows and
flexible durations, simple temporal constraints, and pref-
erences over a combination of start time and duration of
tasks. We have shown that a VCG mechanism exists for
this problem, which (to our knowledge) is the first mecha-
nism for an auction on a mixture of divisible and indivisible
goods. We have identified a class of OCS problems with a
tractable second-price mechanism: activities with time win-
dows, flexible duration, ordering constraints, convex, piece-
wise linear preferences, no containment pairs, and for which
duration of zero is feasible. The tractability result is a novel
extension of the theory of STPPs to tractably handle task
ordering and task rejection.

Obviously a study of the general case of OCS for the
DSN is worthwhile. Task containment, metric temporal con-
straints, multi-capacity resources and choices over resources
will generally lead toNP-hard problems. We are investi-

2Investigations of solution quality, task rejection and so on are
pending.

gating options for incorporating the solving of tractable sub-
cases in a complete solver, in a manner similar to that de-
scribed in (WS05). The tractable cases for STPP described
in this paper provide methods for bounding above the value
of schedules by relaxing the STPP constraints; they can then
be used both as inference mechanisms and as the bases of
heuristics. Proving the value of the bounds and subsequently
experimenting with those bounds inside a complete solver
are on our agenda.

In our formulation, we implicitly assumed that the facil-
ity owner (NASA) was the auctioneer and thus had no bid.
However, we could generally introduce new bidders to rep-
resent the facility owner’s criteria on schedules. For exam-
ple, maximizing utilization could be a preference; NASA
could be given a budget for this, and express preferences
over it, thereby influencing the auction. In general, we be-
lieve the tractability results will extend to multiple prefer-
ences over a set of activities.

The tractable cases of OCS for DSN restrict the nature
of the preference functions to piecewise linear convex func-
tions of the duration,vA(DA) and forces preferences to ex-
tend to DA = 0. If more general preference functions
vA(DA, SA) are allowed, care must be taken to ensure that
rejected tasks derive no value, or formally,vA(0, SA) = 0.
Furthermore, metric temporal constraints on rejected tasks
should not be enforced. The STPP framework may not be
appropriate in this setting; we are investigating other for-
malisms in search of new tractable algorithms.

References
Y. Bartal, R. Gonen, and N. Nisam. Incentive compatible
multi unit combinatorial auctions. InProceedings of the
Dagstuhl Workshop on Electronic Market Design, 2002.
P. Br̈ucker.Scheduling Algorithms. Springer, 1998.
K. Back and J. Zender. Auctions for divisible goods: On
the rationale of the treasury experiment.The Review of
Financial Studies, 6(4):733 – 764, 1993.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–94, 1991.
P. Morris, R. Morris, L. Khatib, S. Ramakrishnan, and
A. Bachmann. Strategies for global optimization of tem-
poral preferences. InProceedings of the10th International
Conference on the Principles and Practices of Constraint
Programming, pages 408 –422, 2004.
R. T. Maheswaran and T. Başar. Nash equilibrium and
decentralized negotiation in auctioning divisible resources.
Journal of Group Decisions and Negotiation, 13(2), 2003.
T. Roughgarden. Stackelberg scheduling strategies.SIAM
Journal of Computing, 33(2), 2004.
T. Sandholm and S. Suri. Improved algorithms for optimal
winner determination in combinatorial auctions and gener-
alizations. InProceedings of the17th National Conference
on Artificial Intelligence, pages 90–96, 2000.
X. Wang and S. Smith. Retaining flexibility to maximize
quality: When the scheduler has the right to decide activity
duration. InProceedings of the International Conference
on Automated Planning and Scheduling, 2005.

